Backtesting Function¶
Here is a description of the backtest function and all of its parameters. This is true for any kind of backtesting that you will be doing.
- lumibot.strategies.strategy.Strategy.run_backtest(*args, minutes_before_closing=5, minutes_before_opening=60, sleeptime=1, stats_file=None, risk_free_rate=None, logfile=None, config=None, auto_adjust=False, name=None, budget=None, benchmark_asset='SPY', plot_file_html=None, trades_file=None, settings_file=None, pandas_data=None, quote_asset=USD, starting_positions=None, show_plot=True, tearsheet_file=None, save_tearsheet=True, show_tearsheet=True, parameters={}, buy_trading_fees=[], sell_trading_fees=[], api_key=None, polygon_api_key=None, polygon_has_paid_subscription=False, indicators_file=None, show_indicators=True, save_logfile=True, **kwargs)¶
Backtest a strategy.
- Parameters:
datasource_class (class) – The datasource class to use. For example, if you want to use the yahoo finance datasource, then you would pass YahooDataBacktesting as the datasource_class.
backtesting_start (datetime) – The start date of the backtesting period.
backtesting_end (datetime) – The end date of the backtesting period.
minutes_before_closing (int) – The number of minutes before closing that the minutes_before_closing strategy method will be called.
minutes_before_opening (int) – The number of minutes before opening that the minutes_before_opening strategy method will be called.
sleeptime (int) – The number of seconds to sleep between each iteration of the backtest.
stats_file (str) – The file to write the stats to.
risk_free_rate (float) – The risk-free rate to use.
logfile (str) – The file to write the log to.
config (dict) – The config to use to set up the brokers in live trading.
auto_adjust (bool) – Whether to automatically adjust the strategy.
name (str) – The name of the strategy.
budget (float) – The initial budget to use for the backtest.
benchmark_asset (str or Asset) – The benchmark asset to use for the backtest to compare to. If it is a string then it will be converted to a stock Asset object.
plot_file_html (str) – The file to write the plot html to.
trades_file (str) – The file to write the trades to.
pandas_data (list) – A list of Data objects that are used when the datasource_class object is set to PandasDataBacktesting. This contains all the data that will be used in backtesting.
quote_asset (Asset (crypto)) – An Asset object for the cryptocurrency that will get used as a valuation asset for measuring overall porfolio values. Usually USDT, USD, USDC.
starting_positions (dict) – A dictionary of starting positions for each asset. For example, if you want to start with $100 of SPY, and $200 of AAPL, then you would pass in starting_positions={‘SPY’: 100, ‘AAPL’: 200}.
show_plot (bool) – Whether to show the plot.
show_tearsheet (bool) – Whether to show the tearsheet.
save_tearsheet (bool) – Whether to save the tearsheet.
parameters (dict) – A dictionary of parameters to pass to the strategy. These parameters must be set up within the initialize() method.
buy_trading_fees (list of TradingFee objects) – A list of TradingFee objects to apply to the buy orders during backtests.
sell_trading_fees (list of TradingFee objects) – A list of TradingFee objects to apply to the sell orders during backtests.
api_key (str) – The polygon api key to use for polygon data. Only required if you are using PolygonDataBacktesting as the datasource_class.
polygon_api_key (str) – The polygon api key to use for polygon data. Only required if you are using PolygonDataBacktesting as the datasource_class. Deprecated, please use ‘api_key’ instead.
polygon_has_paid_subscription (bool) – Whether you have a paid subscription to Polygon. Only required if you are using PolygonDataBacktesting as the datasource_class.
indicators_file (str) – The file to write the indicators to.
show_indicators (bool) – Whether to show the indicators plot.
save_logfile (bool) – Whether to save the logfile. Defaults to True. If False, the logfile will not be saved.
- Returns:
The backtest object.
- Return type:
Backtest
Examples
>>> from datetime import datetime >>> from lumibot.backtesting import YahooDataBacktesting >>> from lumibot.strategies import Strategy >>> >>> # A simple strategy that buys AAPL on the first day >>> class MyStrategy(Strategy): >>> def on_trading_iteration(self): >>> if self.first_iteration: >>> order = self.create_order("AAPL", quantity=1, side="buy") >>> self.submit_order(order) >>> >>> # Create a backtest >>> backtesting_start = datetime(2018, 1, 1) >>> backtesting_end = datetime(2018, 1, 31) >>> >>> # The benchmark asset to use for the backtest to compare to >>> benchmark_asset = Asset(symbol="QQQ", asset_type="stock") >>> >>> backtest = MyStrategy.backtest( >>> datasource_class=YahooDataBacktesting, >>> backtesting_start=backtesting_start, >>> backtesting_end=backtesting_end, >>> benchmark_asset=benchmark_asset, >>> )